

Reg. No.:		-10									2.4	T
-----------	--	-----	--	--	--	--	--	--	--	--	-----	---

Question Paper Code: 42772

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2018

Fifth Semester

Computer Science and Engineering MA2265 – DISCRETE MATHEMATICS

(Common to Information Technology)
(Regulations 2008)

(Common to PTMA2265 – Discrete Mathematics for B.E. (Part-Time)
Third Semester – CSE – Regulations 2009)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. Use Truth table, check whether $(P \land Q) \lor (\neg P \lor \neg Q)$ is a tautology or contradiction.
- 2. State the truth value of the statement: 'If tiger has wings, then the earth travel round the sun'.
- 3. State and prove Pigeonhole principle.
- 4. How many positive integers n can be formed using the digits 3, 4, 5, 5, 6, 6, 7 if n has to exceed 50,00,000?
- 5. Check whether the graph $K_{2,4}$ is Eulerian or Hamiltonian. Justify the claim.
- 6. What is meant by mixed graph?
- 7. Let Z denote the set of all integers. A binary operation * is defined on Z by a * b = a + b ab for all a, b in Z. Is (Z, *) a semigroup?
- 8. Give an example of a ring which is not a field. Justify the claim.
- 9. Show that every totally ordered set is a lattice.
- 10. Give an example of a lattice which is complemented but not distributive.

PART - B

 $(5\times16=80 \text{ Marks})$

- 11. a) i) Use truth table to show that $(P \to R) \land (Q \to R) \equiv (P \lor Q) \to R$. (8)
 - ii) Give a proof by contradiction of the theorem "If 3n + 2 is odd, then show that n is odd.

 (8)

(OR)

- b) i) Show that $A \wedge S$ can be derived from the premises $P \rightarrow Q$, $Q \rightarrow \neg R$, R, $P \vee (A \wedge S)$.
 - ii) Show that $\neg(\forall x)$ $(P(x) \rightarrow Q(x))$ and $(\exists x)$ $(P(x) \land \neg Q(x))$ are logically equivalent. (8)
- 12. a) i) Prove that if m is an odd positive integer, then there exists a positive integer n such that m divides $2^n 1$.
 - ii) Solve $a_n 6a_{n-1} + 8a_{n-2} = 3^n$, $n \ge 2$, $a_0 = 0$, $a_1 = 7$. (10)
 - b) i) Find the number n, $1 \le n \le 1000$ such that n is not divisible by 2, 3 or 5. (8)
 - ii) Solve $a_n 2a_{n-1} 3a_{n-2} = 0$, $n \ge 2$, $a_0 = 3$, $a_1 = 1$. (8)
- 13. a) i) Show that an undirected graph has an even number of vertices of odd degree. (8)
 - ii) If G is a simple graph with n vertices and k-components, then show that the number of edges is at most (n k) (n k + 1)/2.
 (OR)
 - b) i) Test whether the graphs with the following adjacency matrices

 $A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \text{ are isomorphic or not.}$ (8)

- ii) Show that the complete bipartite graph $K_{m, n}$ is Hamiltonian if and only if m = n.
- 14. a) i) If every element in a group is its own inverse, then show that G is an abelian group.
 - ii) Show that the order of a subgroup H of a finite group G divides the order of the group G. (12)

(OR)

- b) i) Show that the set of all permutations of three distinct elements with right composition of permutation is a permutation group. (10)
 - ii) Show that if $f: \langle G, * \rangle \to \langle H, \Delta \rangle$ is a group homomorphism, then Ker(f) is a normal subgroup of the group G. (6)
- 15. a) i) Let (P, ≤) be a poset. If the least element and greatest element exist, then show that they are unique.(6)
 - ii) Show that in a lattice, isotone property and distributive inequalities are true. (10)

(OR)

b) Show that in a complemented and distributive lattice L, the following are true. For all x, y in L,

i)
$$a \le b \Leftrightarrow a * b' = 0 \Leftrightarrow a' \oplus b = 1 \Leftrightarrow b' \le a'$$
. (10)

ii)
$$(a * b)' = a' \oplus b'$$
 and $(a \oplus b)' = a' * b'$.

- by the Show that the set of all paymutations of three distance elements with right composition of paymutation is a permutation prosp.

 (1997)
- in show that if $f:(G,A) \to (H,A)$ is a group homomorphism, then Earth is a count to come subgroup of the group G.
- i) Let (P, S) be a punct. If the least element and prestent element exist, then
 above that they are unique.
- Show that in a lattice, isotone property and distributive inequalities and inves.

 (10)

(DEC)

- Show that in a complemented and distributive lattice L, the following are true.
 I'm all x, y in L.
 - neben'b'=0en'Bb=1eb'sa'.
 - $(d^* b) = u \cdot (d \oplus b)$ form $(d \oplus b) = u \cdot (d + a)$.