| Reg. No.: | | -10 | | | | | | | | | 2.4 | T | |-----------|--|-----|--|--|--|--|--|--|--|--|-----|---| |-----------|--|-----|--|--|--|--|--|--|--|--|-----|---| ## Question Paper Code: 42772 ## B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2018 Fifth Semester Computer Science and Engineering MA2265 – DISCRETE MATHEMATICS (Common to Information Technology) (Regulations 2008) (Common to PTMA2265 – Discrete Mathematics for B.E. (Part-Time) Third Semester – CSE – Regulations 2009) Time: Three Hours Maximum: 100 Marks ## Answer ALL questions PART - A $(10\times2=20 \text{ Marks})$ - 1. Use Truth table, check whether $(P \land Q) \lor (\neg P \lor \neg Q)$ is a tautology or contradiction. - 2. State the truth value of the statement: 'If tiger has wings, then the earth travel round the sun'. - 3. State and prove Pigeonhole principle. - 4. How many positive integers n can be formed using the digits 3, 4, 5, 5, 6, 6, 7 if n has to exceed 50,00,000? - 5. Check whether the graph $K_{2,4}$ is Eulerian or Hamiltonian. Justify the claim. - 6. What is meant by mixed graph? - 7. Let Z denote the set of all integers. A binary operation * is defined on Z by a * b = a + b ab for all a, b in Z. Is (Z, *) a semigroup? - 8. Give an example of a ring which is not a field. Justify the claim. - 9. Show that every totally ordered set is a lattice. - 10. Give an example of a lattice which is complemented but not distributive. ## PART - B $(5\times16=80 \text{ Marks})$ - 11. a) i) Use truth table to show that $(P \to R) \land (Q \to R) \equiv (P \lor Q) \to R$. (8) - ii) Give a proof by contradiction of the theorem "If 3n + 2 is odd, then show that n is odd. (8) (OR) - b) i) Show that $A \wedge S$ can be derived from the premises $P \rightarrow Q$, $Q \rightarrow \neg R$, R, $P \vee (A \wedge S)$. - ii) Show that $\neg(\forall x)$ $(P(x) \rightarrow Q(x))$ and $(\exists x)$ $(P(x) \land \neg Q(x))$ are logically equivalent. (8) - 12. a) i) Prove that if m is an odd positive integer, then there exists a positive integer n such that m divides $2^n 1$. - ii) Solve $a_n 6a_{n-1} + 8a_{n-2} = 3^n$, $n \ge 2$, $a_0 = 0$, $a_1 = 7$. (10) - b) i) Find the number n, $1 \le n \le 1000$ such that n is not divisible by 2, 3 or 5. (8) - ii) Solve $a_n 2a_{n-1} 3a_{n-2} = 0$, $n \ge 2$, $a_0 = 3$, $a_1 = 1$. (8) - 13. a) i) Show that an undirected graph has an even number of vertices of odd degree. (8) - ii) If G is a simple graph with n vertices and k-components, then show that the number of edges is at most (n k) (n k + 1)/2. (OR) - b) i) Test whether the graphs with the following adjacency matrices $A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \text{ are isomorphic or not.}$ (8) - ii) Show that the complete bipartite graph $K_{m, n}$ is Hamiltonian if and only if m = n. - 14. a) i) If every element in a group is its own inverse, then show that G is an abelian group. - ii) Show that the order of a subgroup H of a finite group G divides the order of the group G. (12) (OR) - b) i) Show that the set of all permutations of three distinct elements with right composition of permutation is a permutation group. (10) - ii) Show that if $f: \langle G, * \rangle \to \langle H, \Delta \rangle$ is a group homomorphism, then Ker(f) is a normal subgroup of the group G. (6) - 15. a) i) Let (P, ≤) be a poset. If the least element and greatest element exist, then show that they are unique.(6) - ii) Show that in a lattice, isotone property and distributive inequalities are true. (10) (OR) b) Show that in a complemented and distributive lattice L, the following are true. For all x, y in L, i) $$a \le b \Leftrightarrow a * b' = 0 \Leftrightarrow a' \oplus b = 1 \Leftrightarrow b' \le a'$$. (10) ii) $$(a * b)' = a' \oplus b'$$ and $(a \oplus b)' = a' * b'$. - by the Show that the set of all paymutations of three distance elements with right composition of paymutation is a permutation prosp. (1997) - in show that if $f:(G,A) \to (H,A)$ is a group homomorphism, then Earth is a count to come subgroup of the group G. - i) Let (P, S) be a punct. If the least element and prestent element exist, then above that they are unique. - Show that in a lattice, isotone property and distributive inequalities and inves. (10) (DEC) - Show that in a complemented and distributive lattice L, the following are true. I'm all x, y in L. - neben'b'=0en'Bb=1eb'sa'. - $(d^* b) = u \cdot (d \oplus b)$ form $(d \oplus b) = u \cdot (d + a)$.